

Multiscale model of the spinal dorsal horn reveals changes in network processing associated with chronic pain

Laura Medlock, Ph.D. Candidate

Institute of Biomedical Engineering, University of Toronto Neurosciences & Mental Health, The Hospital for Sick Children

Canadian Computational Neuroscience Spotlight v3 | June 6th, 2022

Sensory Processing

- Sensory processing begins when primary afferents carry touch signals to the spinal cord
- In the SDH signals are processed by interneurons before being relayed to the brain by projection neurons

Spinal Dorsal Horn

• The SDH relies on multiple cellular- and circuit-level mechanisms to correctly process sensory input

3

Chronic Pain

- In chronic pain conditions there is abnormal processing of touch signals
- Improved clinical treatments are hindered by incomplete understanding of higher-level sensory processing

Problem: We need to investigate the network-level consequences of disinhibition

• Probing the SDH is difficult to do experimentally due to its immense complexity

Solution: We built a multiscale model of the SDH and simulate disinhibition

• Link the molecular-, cellular-, and network-level properties underlying chronic pain

In	ТΥ	\sim	\mathbf{c}		\sim		\sim	
		U	u	U.	6	L I	U.	

NetPyNE

• We developed the network using NetPyNE, a Python package that helps facilitate the development, simulation, and analysis of multiscale network models in NEURON

Dura-Bernal et al. (2019)

6

Spinal Neuron Models

• Conductance-based models were tuned to match electrophysiology recordings from spinal neurons

Introductio

Methods

Circuit Connectivity

• The model circuit was designed based on experimentally-derived SDH connectivity

Experimentally dissected using:

- Paired recordings
- Genetic labeling
- Optogenetics
- Ablation studies

Circuit Connectivity

• Variability in circuit output (e.g. across pNK1 spike trains) is influenced by...

Population Size

- A total of 409 neurons were simulated across 15 different populations.
- Numbers of neurons in each population were mainly approximated from immunohistochemical data.
- The number of neurons were scaled down to 20% to reduce computing load.

(Le Bars et al. 2001, Häring et al. 2018)

Synapse Models

- Excitatory synaptic transmission was mediated by AMPA, NMDA, or NK1 receptors.
- Inhibitory synaptic transmission was mediated by $GABA_A$ or glycine receptors.
- Synapses were modeled using Exp2Syn and scaled by a synaptic weight.

$$I_{syn} = g_{syn} \times (V - E_{ion})$$
$$g_{syn} = weight \times \left(e^{\frac{-t}{\tau^2}} - e^{\frac{-t}{\tau^1}}\right)$$

N=35 synaptic weights

Summary

Fitting the Model to Experimental Data

• <u>Synaptic weights</u> were optimized so that primary afferent input produced projection neuron output in response to the same experimental stimulation.

Optimizing Synaptic Weights

• We optimized the 35 synaptic weights using a genetic algorithm

13

Result 1: The SDH model reproduces experimental responses to mechanical stimulation across multiple intensities

Result 1: The SDH model reproduces experimental responses to mechanical stimulation across multiple intensities

Ex. Model response to 100 mN...

Degeneracy \rightarrow Different mechanisms that give rise to similar/nearly identical behaviour

Adapted from Marder et al. (2015)

Adapted from Marder et al. (2015)

Introduction

Introducti

Introductio

Summary

Implications for Degeneracy in SDH

• Degeneracy in spinal circuit wiring may underlie heterogenous responses of different circuits to pathological insult or therapeutic intervention.

Summary & Conclusions

We have built a data-driven, multiscale model of the SDH circuit

Optimization of the model revealed circuit-level degeneracy in the SDH

Top model reproduces experimental data under normal and pathological conditions

The model provides a new tool for testing hypotheses *in silico*

Thank you!

Dr. Steve Prescott Prescott Lab

Dr. Kazutaka Sekiguchi Shionogi Pharmaceutical Research Center, Osaka, Japan

Dr. Bill Lytton Dr. Salvador Dura-Bernal

SUNY Downstate, New York, US

Dr. Sungho Hong

Okinawa Institute of Science & Technology, Okinawa, Japan

